- Power Supply DC
- Voltmeter DC
-Batrai
- Resistor
Spesifikasi:
- Transistor BC548C
Spesifikasi :
- Catu daya : 3 V - 15 V
- Fungsi : Quad 2-Input AND Gate
- Propagation delay : 55 ns
- Level tegangan I/O : CMOS
- Kemasan : DIP 14-pin
- Gerbang Logika OR 7432
Spesifikasi :
Tegangan Suplai: 5 hingga 7V
Tegangan Input: 5 hingga 7V
Kisaran suhu pengoperasian = -55 ° C hingga 125 ° C
Tersedia dalam paket SOIC 14-pin- JK Flipflop
JK flip-flop adalah perangkat memori bit tunggal dua status sekuensial yang dinamai menurut penemunya oleh Jack Kil. dari jam atau di tepi belakangnya dan karenanya dapat dipicu oleh sisi positif atau negatif, masingmasing.
- Decoder
- has a broader Voltage range
- A variety of operating conditions
- internal pull-ups ensure you don't need external resistors
- Four input lines and seven output lines
- input clamp diode hence no need for high-speed termination
- comes with open collector output
- Relay
- Motor
Spesifikasi item:
o Tanpa kecepatan beban 12000 ± 15% rpm
o Tidak ada arus beban =280mA
o Tegangan operasi 1.5-9V DC
o Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)
o mulai saat ini =5A
o Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V
o Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative
o daya, searah jarum jam dianggap oleh arah poros keluaran
o celah poros 0,05-0,35mm
Grafik Motor DC:
- Buzzer
Spesifikasi:
a. Tegangan operasi 4-8V DC
b.Arus <30mA
c. Frekuensi Resonansi 2300Hz
- Sensor Touch
Spesifikasi:
Konfigurasi Pin:
-Sensor Hujan
Spesifikasi:
- Operating voltage ranges from 3.3 to 5V
- The operating current is 15 mA
- The sensing pad size is 5cm x 4 cm with a nickel plate on one face.
- Comparator chip is LM393
- Output types are AO (Analog o/p voltage) & DO (Digital switching voltage)
- The length & width of PCB module 3.2cm x 1.4cm
- Sensitivity is modifiable through Trimpot
- Red/Green LED lights indicators for Power & Output
- Tegangan operasi antara 3,3 – 5 Vdc
- Terdapat 2 output yaitu digital output dan analog output yang berupa tegangan
- Sudah terpackage dalam bentuk modul
- Terdapat potensiometer sebagai pengaturan sensitivitas sensor dalam mensensing
Lampu
Spesifikasi
- Transistor
Resistor merupakan salah satu komponen yang digunakan dalam rangkaian sirkuit atau rangkaian elektronik. Resistor bekerja sebagai resistansi/ hambatan yang mengatur atau mengendalikan emosi dan arus listrik rangkaian. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm :
Penjelasan sensor pita
- Dioda
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
3. Rumus
- Induktor
Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.
Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.
Simbol Induktor
Berikut ini adalah Simbol-simbol Induktor :Simbol Induktor di proteus :
Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :- Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
- Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
- Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
- Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.
Jenis-jenis Induktor (Coil)
Berdasarkan bentuk dan bahan inti-nya, Induktor dapat dibagi menjadi beberapa jenis, diantaranya adalah :- Air Core Inductor – Menggunakan Udara sebagai Intinya
- Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
- Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
- Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
- Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
- Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.
- Fungsi Induktor (Coil) dan Aplikasinya
Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.
Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :- Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
- Transformator (Transformer)
- Motor Listrik
- Solenoid
- Relay
- Speaker
- Microphone
- Induktor
Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.
Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.Simbol Induktor
Berikut ini adalah Simbol-simbol Induktor :Simbol Induktor di proteus :
Nilai Induktansi sebuah Induktor (Coil) tergantung pada 4 faktor, diantaranya adalah :
- Jumlah Lilitan, semakin banyak lilitannya semakin tinggi Induktasinya
- Diameter Induktor, Semakin besar diameternya semakin tinggi pula induktansinya
- Permeabilitas Inti, yaitu bahan Inti yang digunakan seperti Udara, Besi ataupun Ferit.
- Ukuran Panjang Induktor, semakin pendek inductor (Koil) tersebut semakin tinggi induktansinya.
Jenis-jenis Induktor (Coil)
Berdasarkan bentuk dan bahan inti-nya, Induktor dapat dibagi menjadi beberapa jenis, diantaranya adalah :
- Air Core Inductor – Menggunakan Udara sebagai Intinya
- Iron Core Inductor – Menggunakan bahan Besi sebagai Intinya
- Ferrite Core Inductor – Menggunakan bahan Ferit sebagai Intinya
- Torroidal Core Inductor – Menggunakan Inti yang berbentuk O Ring (bentuk Donat)
- Laminated Core Induction – Menggunakan Inti yang terdiri dari beberapa lapis lempengan logam yang ditempelkan secara paralel. Masing-masing lempengan logam diberikan Isolator.
- Variable Inductor – Induktor yang nilai induktansinya dapat diatur sesuai dengan keinginan. Inti dari Variable Inductor pada umumnya terbuat dari bahan Ferit yang dapat diputar-putar.
- Fungsi Induktor (Coil) dan Aplikasinya
Fungsi-fungsi Induktor atau Coil diantaranya adalah dapat menyimpan arus listrik dalam medan magnet, menapis (Filter) Frekuensi tertentu, menahan arus bolak-balik (AC), meneruskan arus searah (DC) dan pembangkit getaran serta melipatgandakan tegangan.
Berdasarkan Fungsi diatas, Induktor atau Coil ini pada umumnya diaplikasikan :
- Sebagai Filter dalam Rangkaian yang berkaitan dengan Frekuensi
- Transformator (Transformer)
- Motor Listrik
- Solenoid
- Relay
- Speaker
- Microphone
Transistor NPN
Rumus dari Transitor adalah :
hFE = iC/iB
dimana, iC = perubahan arus kolektor
iB = perubahan arus basis
hFE = arus yang dicapai
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Pemberian bias Ada beberapa macam rangkaian pemberian bias, yaitu: 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Gelombang I/O Transistor
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
- Decoder (IC 7447)
IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448.
IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.
Konfigurasi Pin Decoder:
a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.
Truth Table
- 7 Segment Anoda
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment Display
- Light Emitting Code (LED)
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya. Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.
- Light Emitting Code (LED)
Simbol dan Bentuk LED (Light Emitting Diode)
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya.
Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya.
- Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
- Voltmeter
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.
- Ground
Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian
- Baterai
- Power Supply
- Sensor Sentuh (TOUCH SENSOR)
JENIS-JENIS SENSOR SENTUH
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
(Gambar 18. jenis touch sensor)
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
6. Sensor Hujan
adalah jenis sensor yang berfungsi untuk mendeteksi terjadinya hujan atau tidak, yang dapat difungsikan dalam segala macam aplikasi dalam kehidupan sehari – hari. Sensor dipasaran ini dijual dalam bentuk modul sehingga hanya perlu menyediakan kabel jumper untuk mendukung mikrokontroler atau Arduino. Prinsip kerja dari modul sensor ini yaitu pada saat ada air hujan turun dan mengenai panel sensor maka akan terjadi proses elektrolisis oleh air hujan. Dan karena air hujan termasuk dalam golongan cairan elektrolit yang dimana cairan tersebut akan menghantarkan arus listrik.
Pada sensor hujan ini terdapat ic komparator yang dimana output dari sensor ini dapat berupa logika tinggi dan rendah (on atau off). Serta pada modul sensor ini terdapat keluaran yang berupa tegangan pula. Sehingga dapat dikoneksikan ke pin khusus Arduino yaitu Analog Digital Converter. Dengan kata singkat, sensor ini dapat digunakan untuk menyatukan kondisi tidaknya hujan di lingkungan luar yang dimana output dari sensor ini dapat berupa sinyal analog maupun sinyal digital.
Spesifikasi sensor hujan :
1. Sensor ini bermaterial dari FR-04 dengan dimensi 5cm x 4cm berlapis nikel dan dengan kualitas tinggi pada kedua sisinya
2. Pada lapisan modul memiliki sifat anti oksidasi sehingga tahan terhadap korosi
3. koneksi kerja masukan sensor 3.3V – 5V
4. Menggunakan IC komparator LM393 yang stabil
5. Output dari modul comparator dengan kualitas sinyal yang bagus lebih dari 15mA
6. Dilengkapi lubang baut untuk instalasi dengan modul lainnya
7. Terdapat potensiometer yang berfungsi untuk mengatur sensitifitas sensor
8. Terdapat 2 Output yaitu digital (0 dan 1) dan analog (tegangan)
9. Dimensi PCB yaitu 3.2 cm x 1.4 cm.
Adder IC 7482
IC 7482, The NTE7482 is a 2−bit binary full adder in a 14−Lead DIP type melakukan penambahan dari dua bilangan biner 2 bit.
Konfigurasi
Datasheet :
- Sensor Gas MQ2
Sound sensor adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
Prinsip kerja sound sensor
Sensor suara bekerja berdasarkan prinsip mengubah gelombang suara menjadi sinyal listrik. Jenis sensor suara paling umum adalah Mikrofon Elektret Kondensator (ECM), yang terdiri dari membran, plat belakang, dan bahan elektret. Ketika gelombang suara mengenai membran, membran bergetar, menyebabkan perubahan jarak antara membran dan plat belakang. Variasi jarak ini menyebabkan perubahan kapasitansi, menghasilkan sinyal listrik yang sebanding dengan amplitudo gelombang suara.
Grafik respon sound sensor
Pada rangkaian tugas besar yang berjudul mobil pintar ini, kami menggunakan Flame sensor sebanyak 1 buah, Rain sensor 1 buah, MQ-5 sebanyak 1 buah, Touch sensor sebanyak 1 buah. Sensor ini berfungsi sebagai alat yang nantinya akan digunakan pada sebuah mobil shingga memungkinkan untuk mobil melakukan beberapa tindakan secara otomatis sesuai dengan yang terdeteksi dengan sensor.
Sensor touch sensor terletak pada pintu mobil. Dimana apabila ada org yang menyentuh pintu mobil dibagian dekat sensor diletakkan. Maka sensor akan belogika 1 dan outputnya akan masuk ke gerbang AND. Kaki AND yang satu lagi akan berlogika 1 apabila mobil dinyalakan. Maka apabila mobil hidup dan sensor berlogika 1, gerbang AND akan berlogika 1 sesuai dengan prinsip kerja dari gerbang AND. Kaki output dari gerbang AND akan diteruskan ke resistor dan NPN transistor. Yang tegangan VBE telah melewati batas minimum sehingga dioda akan aktif dan mengakibatkan relay berpindah kaki yang mengakibatkan motor berputar dan pintu terbuka dan lampu LED yang menandakan pintu terbuka akan menyala.
Pada Sunroof mobil terdapat sensor rain yang diletakkan pada atap mobil. Ketika sensor terkena hujan maka sensor akan berlogika 1 yang kemudian outputnya akan diteruskan ke kaki gerbang AND. Sedangkan gerbang AND satu lagi akan aktif apabila mobil dihidupkan. Sehingga apabila mobil hidup dan hujan maka gerbang AND akan berlogika 1. Yang kemudian diteruskan ke transistor NPN yang nantinya akan mengakibatkan dioda aktif karena telah melewati tegangan minimumnya sehingga motor berputar dan mengakibatkan sunroof mobil tertutup.
Pada flame sensor terletak dibagian depan mobil atau di sekitar mesin mobil. Yang mana ketika sensor mendeteksi adanya api pada mesin mobil sensor akan berlogika 1. Output akan dimasukkan ke IC 7482. Dimana IC ini merupakan IC aritmatik 2-bit full adder. Output dari sensor akan masuk ke kaki B2 IC 7482 dimana sesuai dengan tabel kebenaran apabila B2 berlogika 1 maka kaki output IC 7482 yang S2 akan berlogika 1 diteruskan ke kaki IC 74274 kaki A. dimana sesuai dengan tabel kebenaran dari IC 74274, akan menampilkan angka 1 pada seven segmen yang terletak pada layar didepan pengemudi.
Ketika api terdeteksi, maka akan menimbulkan asap, maka MQ-5 yang terletak di dalam mobil akan aktif yang ditandai sensor akan berlogika 1. Outputan sensor dihubungkan ke salah satu kaki inputan gerbang logika OR dan salah satu kaki inputan yang lainnya dihubungkan ke ground, sesuai dengan tabel kebenara gerbang logika gerbang logika OR, maka keluaran logika nya akan berlogika 1 HIGH lalu di teruskan ke transistor Q2. Dikarenakan tegangan VBE pada Q2 sebesar +0.71V yang mana sudah mencukupi tegangan minimum transistor aktif/forward bias, maka relay RL 3 mendapatkan supply dari sumber VCC lalu diteruskan ke kaki kolektor dari transistor Q2, diteruskan ke emiter dan ke groud. Sehingga relay akan hidup. Output dari sensor juga akan masuk ke kaki A1 IC 7482. Sehingga menyebabkan kaki S1 output dari IC 7482 akan berlogika 1 sesuai tabel kebeneran. Akan diteruskan ke dioda karena tegangan VBE sudah melewati syarat minimal transistor aktif maka dioda akan aktif. Karena relay 3 telah aktif dan RL 1 juga telah aktif karena vcc terdapat vcc. Sehingga motor akan berputar yang menandakan jendela mobil akan terbuka secara otomatis untuk mengeluarkan asap yang terperangkap dan memudahkan pengemudi untuk keluar apabila pintu rusak.
Video Rangkaian Download
Video Merangkai Download
File Rangkaian Download
Html & materiDownload
Datasheet resistor Download
Datasheet transistor NPN Download
Datasheet motor DC Download
Datasheet relay Download
Datasheet led Download
Datasheet Gerbang AND Download
Datasheet 7 Segment Download
Datasheet Decoder Download
Tidak ada komentar:
Posting Komentar